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Abstract
Measurements of the magnetic properties of the magnetic semiconductor
Zn1−x Mnx In2Se4 for two Mn compositions (x = 0.87 and 1.00) are presented in
this work. The localized Mn ions in the layered rhombohedral structure undergo
a spin-freezing transition below 3.5 K. The frequency-dependent freezing
temperature Tf varies as �Tf/(Tf� log ω) ≈ 0.022, indicating a spin-glass
behaviour. From the frequency dependence of Tf, the validity of the critical
slowing down associated with a true phase transition is tested. For T > Tc,
the dynamic scaling of the imaginary component of ac susceptibility data yields
the following set of critical parameters: zν = 9.7 ± 1.0, β = 1.18 ± 0.20 and
Tc = 2.61 ± 0.06 K for x = 0.87 and zν = 10.7 ± 0.9, β = 1.20 ± 0.20 and
Tc = 3.43 ± 0.01 K for x = 1.00. These values are in good agreement with
reported values for other spin glasses.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although spin-glass behaviour in semiconductors with short-range antiferromagnetic
interactions has been studied for a long time, their relation to canonical spin glasses is still
under investigation [1–3]. The variety of experimental realizations of the spin-glass state is due
to the different ways in which the two main ingredients, randomness and frustration, may be
present [4, 5]. In fact, a random distribution of magnetic interactions may be achieved either
by a topological disorder or by mixing magnetic ions, as well as being generated in compounds
with short-range interactions [6, 7].

We report here the magnetic properties of another site-disordered semiconductor
Zn1−x Mnx In2Se4, with short-ranged antiferromagnetic super-exchange interaction between
Heisenberg spins but with a quasi-two-dimensional structure. As was established by Range
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et al [8] and confirmed by us for a Mn concentration of x � 0.87 [9], this structure consists
of slabs of four Se layers which are van der Waals coupled to each other. Within the slabs the
metal cations are distributed over three triangular layers between the Se layers, in a tetrahedral–
octahedral–tetrahedral site sequence.

The Mn2+ ion provides localized, pure spin (s = 5/2) magnetic moments which interact
through short-range antiferromagnetic super-exchange. For ions in the tetrahedral layers the
exchange paths are similar to those of zinc-blende II–VI diluted magnetic semiconductors
which have an exchange constant J of order −12 K [10]. In this work we have investigated the
dynamics of spin freezing observed in the Zn1−x Mnx In2Se4 system by means of ac magnetic
susceptibility measurements.

2. Experimental details

Single crystals of Zn1−x Mnx In2Se4 with nominal Mn concentrations x = 0.87 and 1.00 were
prepared by a vapour phase chemical transport technique (CVT). A detailed explanation of the
thermal procedure is given in [9].

The determination of the Mn content was made using the technique of x-ray fluorescence
spectroscopy of dispersive energy (XDE) (Shimadzu XDE-900 device). Values of the Mn
concentration were in good agreement with those extracted from the analysis of magnetic
susceptibility data in the range of high temperature [10]. Room-temperature x-ray power
diffraction was used to confirm the rhombohedral structure (space group R3̄m) described
above.

Low-field magnetic measurements were carried out using a commercial SQUID
magnetometer in a broad range of temperature (2 K � T � 300 K). The diamagnetic
contribution of the sample holder was subtracted from the sample signal. In order to
characterize the frequency dependence of the freezing temperature, experimental data for ac
magnetic susceptibility (in-phase χ ′(T ) and out-of-phase χ ′′(T ) components) were obtained
using excitation frequencies in the range of 100 mHz � f � 1 kHz.

3. Results and discussion

Figure 1 shows the temperature dependence of zero-field cooled (ZFC) and field cooled (FC)
curves for samples x � 0.87 obtained with a magnetic field of 100 Oe. Plots for both samples
show quite similar features, namely a clear irreversibility between ZFC and FC curves and a
sharp peak in the ZFC curves. These features are the fingerprints of a spin-glass behaviour and
confirm the results previously reported for the Zn1−x Mnx In2Se4 system (see [11]).

In the high-temperature region the susceptibility data follow the Curie–Weiss behaviour
with θ = −89 and −96 K for x = 0.87 and 1.00, respectively. These values make evident
the existence of strong antiferromagnetic interactions in both samples [10]. Values of Tf,
represented in figure 1, are consistent with those values obtained using electronic paramagnetic
resonance (EPR) [11].

Figure 2 shows the temperature dependence of the ac magnetic susceptibility. These
measurements were carried out with an ac field h = 5 Oe and in a set of five frequencies
from 0.1 Hz to 1 kHz. The temperature dependence of the in-phase component (χ ′) obtained
at the lowest frequency (0.1 Hz) shows a peak at Tf ∼ 2.9 and 3.5 K for x = 0.87 and
1.00, respectively. The imaginary part (χ ′′) exhibits a sudden rise at the temperature Ti,
slightly above Tf (Ti ≈ 4.0 and 3.5 K for x = 1.00 and 0.87, respectively). The freezing
temperature (Tf) strongly depends on the excitation frequency, as can be observed in figure 2.
Tf( f ) decreases with the decrease of frequency, as is expected for a spin-glass system. Ti
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Figure 1. Temperature dependence of the dc zero-field cooled (ZFC) and field cooled (FC) magnetic
susceptibility for Zn1−x Mnx In2Se4. (Plot partially reproduced from [11].)

Figure 2. Temperature dependence of the in-phase (χ ′) and out-of phase (χ ′′) components of the
ac susceptibility measured for Zn1−x Mnx In2Se4 with (a) x = 1.0 and (b) x = 0.87.

indicates the onset of weak irreversibility and is related to the freezing of the transverse spin
components, whereas Tf is related to the strong irreversibility and thus to the freezing of the
longitudinal spin component [12, 13]. Similar results have been reported for other spin-glass
systems [14–19]. It is worth mentioning that essentially the same spin-glass behaviour was
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Figure 3. The frequency dependence of the freezing temperature Tf for Zn1−x Mnx In2Se4 with
(a) x = 1.00 and (b) x = 0.87.

reported for the isostructural Zn1−x Mnx In2Te4 system [18]. The substitution of Se by Te ions
produces slightly higher freezing temperatures.

As a preliminary analysis and to facilitate the comparison with other works we chose
the frequency-dependent freezing temperature, Tf as the maximum of the in-phase magnetic
susceptibility. The relative variation of Tf per frequency decade (�Tf/Tf)/� log f ≈
0.022 was determined [20]. Despite the very different structure of the present materials,
(�Tf/Tf)/� log f is intermediate between those typically reported for metallic spin glasses
(≈0.7 × 10−2) [21] and for the insulator Eu0.6Sr0.4S(5 × 10−2) [22], but is similar to other
reported spin glasses [18, 23]. Taking the temperature corresponding to the cusp of the in-
phase ac magnetic susceptibility as the onset of the strong irreversibility of each measuring time
tmeas = 1/ f ( f being the frequency of the ac magnetic field) and studying the dependence of Tf

on the ac field frequency, the dynamic properties of a true phase transition can be checked [24].
Our analysis of the critical dynamics is based on the conventional slowing down, which is valid
for a spin-glass phase transition at finite temperature, Tc. The divergence of the relaxation time
as the transition is approached from above is described by the power law [25]

f = f0τ
zν , (1)

where τ is related to the reduced temperature, τ = (Tf −Tc)/Tc, ν is the critical exponent of the
correlation length ξ , and z is the dynamic exponent relating ξ and f by 1/ f ∼= τ0ξ

z . Typical
values for f0 are in the range of 1011–1013 Hz for canonical spin glasses.

The frequency dependence of Tf has been analysed using equation (1). Different Tc values
were tested for the best fit of data points. The best fitting curve to the experimental data is
shown in figure 3. From this analysis, we have obtained the zν exponent and Tc for both
investigated samples with x = 0.87 and 1.00 (see figure 3). For MnIn2Se4 the value zν is close
to the values (zν ≈ 8–10) reported for spin glasses [26], as well as for the non-conventional
spin-glass-like system La0.95Sr0.05CoO3 [27]. We note also that the zν value increases when
the Mn concentration is decreased. A similar trend has been reported for other spin-glass
systems [14, 28].
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Figure 4. Scaling of χ ′′(T, f )T performed according to equation (2) for Zn1−x Mnx In2Se4.
(a) Corresponds to x = 1.00 and (b) corresponds to x = 0.87.

In a more complete analysis, we tested the scaling relation for the dynamic critical
properties derived from the linear response theory [6]:

T χ ′′( f, T ) ∼ εβ G[ f ε−zν ]. (2)

Here, G(x) is a universal function of x , β is the exponent of the order parameter, τ = τ0ε
zν

and ε = T/Tc − 1 is the zero-field reduced temperature. In figure 4 we show the result
obtained using the dynamic scaling law (equation (2)) for all data collection of χ ′′( f, T ) at
different frequencies. The best data collapsing corresponds to a set of values zv = 10.7(9),
β = 1.20(20) and Tc = 3.43(1) K for MnIn2Se4 (x = 1.0), and zv = 9.7(1.0), β = 1.18(20)

and Tc = 2.61(6) K for the sample with x = 0.87. These values are in good agreement with
these previously published for semimagnetic systems [29, 30], and also with data obtained
by numerical simulation for the case of three-dimensional spin glasses with short range
interactions [15].

We have also checked the behaviour of the system under the influence of a dc magnetic
field, H . In a Heisenberg spin glass, both strong and weak irreversible lines were first derived
by Almeida and Thouless (AT) [13, 20]. In Ising spin glasses, treated in the Sherrington–
Kirkpatrick (SK) molecular field approximation for purely random interactions of infinite
range, an H –T instability was evidenced (the AT line), which corresponds to the onset of

irreversibilities with the equation Hc ≈ (−τ )
φH−T

2 , where Hc = μH/kBTf(0) is the reduced
magnetic field, τ = (Tf(H ) − Tf(0))/Tf(H ) is the reduced temperature, Tf is the transition
temperature and φ is a critical exponent [31]. This line was first interpreted by Toulouse as
due to a true phase transition. In the case of an isotropic Heisenberg spin-glass system, they
predicted the freezing of the transverse spin components (perpendicular to the applied field)
following a Gabay–Toulouse-like (GT) behaviour (τ ∝ h2) [12, 13]. To determine the (H, Tf)
phase diagram, figure 5 shows the temperature dependence of the real part of the complex
susceptibility measured in various dc magnetic fields (from 20 to 2.0 kOe) and with 10 Hz of
ac frequency for both Mn concentrations (x = 0.87 and 1.00).

As a preliminary analysis and for the sake of simplicity, we defined the temperature Tf(H )

at the maximum of the in-phase magnetic susceptibility. This critical temperature decreases
with increasing dc field, which is similar to other reported results for spin-glass systems [17].
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Figure 5. Temperature variation of the real part of the ac susceptibility obtained for different values
of dc fields and f = 10 Hz: (a) x = 1.00 and (b) x = 0.87.

Figure 6. H –Tf diagrams for Zn1−x Mnx In2Se4 with (a) x = 1.00 and (b) x = 0.87. The solid
curves represent the fit of data; dashed and dotted curves represent the AT and GT lines, respectively.

The best fit to experimental data is shown in figure 6. From this analysis we have obtained
values of φH−T = 1.29(6) and φH−T = 1.54(7) for compounds with x = 0.87 and 1.00,
respectively. From the analysis of H –T plots (figure 6), we can determine that the experimental
data for both samples seem to be more consistent with the GT line. However, at low magnetic
field (H � 200 Oe) the AT-like line [32] better describes the experimental points (see insets
in figure 6). AT-like behaviour (weak irreversibility line) has been also observed in other spin-
glass systems [12]. The evolution from AT-like behaviour to the GT line as the magnetic field
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is increased suggests the presence of small amount of random anisotropy (weak), which seems
to play an important role in the spin-glass phase transition [33, 34].

4. Conclusions

The dynamic magnetic properties of Zn1−xMnx In2Se4 with Mn concentration x � 0.87 have
been investigated in the range of 2 K � T � 300 K. From high-temperature data (T > 100 K)
the Mn concentration x and the Curie–Weiss parameter, θ , were estimated, which are in good
agreement with those obtained from EPR. For samples with x � 0.87, irreversibility features
of a spin-glass transition have been observed at temperatures below 4 K. Values of critical
exponents zν and β are consistent with those reported for conventional spin glasses. Results
obtained from dynamic scaling analysis for MnIn2Se4 and Zn0.13Mn0.87In2Se4, prove that the
freezing at ∼3.43 and ∼2.61 K, respectively, can be considered as a true phase transition of a
spin glass.
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